The Integers 401 to 500

  • Count(d(N)) is the number of positive divisors of n, including 1 and n itself.
  • σ(N) is the Divisor Function. It represents the sum of all the positive divisors of n, including 1 and n itself.
  • s(N) is the Restricted Divisor Function. It represents the sum of the proper divisors of n, excluding n itself.
  • For a Prime Number, Count(d(N))=2. The only divisors for a Prime Number are 1 and itself.
  • A Deficient Number is greater than the sum of its proper divisors; that is, s(N)<n.
  • An Abundant Number is less than the sum of its proper divisors; that is, s(N)>n.
  • A Perfect Number equals the sum of its proper divisors; that is, s(N)=n.
N Divisors of N Count(d(N)) σ(N) s(N) Prime or Composite Notes
4011, 40124021PrimeDeficient
4021, 2, 3, 6, 67, 134, 201, 4028816414CompositeAbundant
4031, 13, 31, 403444845CompositeDeficient
4041, 2, 4, 101, 202, 4046714310CompositeDeficient
4051, 3, 5, 9, 15, 27, 45, 81, 135, 40510726321CompositeDeficient
4061, 2, 7, 14, 29, 58, 203, 4068720314CompositeDeficient
4071, 11, 37, 407445649CompositeDeficient
4081, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, 408161080672CompositeAbundant
4091, 40924101PrimeDeficient
4101, 2, 5, 10, 41, 82, 205, 4108756346CompositeDeficient
4111, 3, 137, 4114552141CompositeDeficient
4121, 2, 4, 103, 206, 4126728316CompositeDeficient
4131, 7, 59, 413448067CompositeDeficient
4141, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 41412936522CompositeAbundant
4151, 5, 83, 415450489CompositeDeficient
4161, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 41612882466CompositeAbundant
4171, 3, 139, 4174560143CompositeDeficient
4181, 2, 11, 19, 22, 38, 209, 4188720302CompositeDeficient
4191, 41924201PrimeDeficient
4201, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420241344924CompositeAbundant
4211, 42124221PrimeDeficient
4221, 2, 211, 4224636214CompositeDeficient
4231, 3, 9, 47, 141, 4236624201CompositeDeficient
4241, 2, 4, 8, 53, 106, 212, 4248810386CompositeDeficient
4251, 5, 17, 25, 85, 4256558133CompositeDeficient
4261, 2, 3, 6, 71, 142, 213, 4268864438CompositeAbundant
4271, 7, 61, 427449669CompositeDeficient
4281, 2, 4, 107, 214, 4286756328CompositeDeficient
4291, 3, 11, 13, 33, 39, 143, 4298672243CompositeDeficient
4301, 2, 5, 10, 43, 86, 215, 4308792362CompositeDeficient
4311, 43124321PrimeDeficient
4321, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432201240808CompositeAbundant
4331, 43324341PrimeDeficient
4341, 2, 7, 14, 31, 62, 217, 4348768334CompositeDeficient
4351, 3, 5, 15, 29, 87, 145, 4358720285CompositeDeficient
4361, 2, 4, 109, 218, 4366770334CompositeDeficient
4371, 19, 23, 437448043CompositeDeficient
4381, 2, 3, 6, 73, 146, 219, 4388888450CompositeAbundant
4391, 43924401PrimeDeficient
4401, 2, 4, 5, 8, 10, 11, 20, 22, 40, 44, 55, 88, 110, 220, 440161080640CompositeAbundant
4411, 3, 7, 9, 21, 49, 63, 147, 4419741300CompositeDeficient
4421, 2, 13, 17, 26, 34, 221, 4428756314CompositeDeficient
4431, 44324441PrimeDeficient
4441, 2, 3, 4, 6, 12, 37, 74, 111, 148, 222, 444121064620CompositeAbundant
4451, 5, 89, 445454095CompositeDeficient
4461, 2, 223, 4464672226CompositeDeficient
4471, 3, 149, 4474600153CompositeDeficient
4481, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448141016568CompositeAbundant
4491, 44924501PrimeDeficient
4501, 2, 3, 5, 6, 9, 10, 15, 18, 25, 30, 45, 50, 75, 90, 150, 225, 450181209759CompositeAbundant
4511, 11, 41, 451450453CompositeDeficient
4521, 2, 4, 113, 226, 4526798346CompositeDeficient
4531, 3, 151, 4534608155CompositeDeficient
4541, 2, 227, 4544684230CompositeDeficient
4551, 5, 7, 13, 35, 65, 91, 4558672217CompositeDeficient
4561, 2, 3, 4, 6, 8, 12, 19, 24, 38, 57, 76, 114, 152, 228, 456161200744CompositeAbundant
4571, 45724581PrimeDeficient
4581, 2, 229, 4584690232CompositeDeficient
4591, 3, 9, 17, 27, 51, 153, 4598720261CompositeDeficient
4601, 2, 4, 5, 10, 20, 23, 46, 92, 115, 230, 460121008548CompositeAbundant
4611, 46124621PrimeDeficient
4621, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462161152690CompositeAbundant
4631, 46324641PrimeDeficient
4641, 2, 4, 8, 16, 29, 58, 116, 232, 46410930466CompositeAbundant
4651, 3, 5, 15, 31, 93, 155, 4658768303CompositeDeficient
4661, 2, 233, 4664702236CompositeDeficient
4671, 46724681PrimeDeficient
4681, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468181274806CompositeAbundant
4691, 7, 67, 469454475CompositeDeficient
4701, 2, 5, 10, 47, 94, 235, 4708864394CompositeDeficient
4711, 3, 157, 4714632161CompositeDeficient
4721, 2, 4, 8, 59, 118, 236, 4728900428CompositeDeficient
4731, 11, 43, 473452855CompositeDeficient
4741, 2, 3, 6, 79, 158, 237, 4748960486CompositeAbundant
4751, 5, 19, 25, 95, 4756620145CompositeDeficient
4761, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476121008532CompositeAbundant
4771, 3, 9, 53, 159, 4776702225CompositeDeficient
4781, 2, 239, 4784720242CompositeDeficient
4791, 47924801PrimeDeficient
4801, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 4802415121032CompositeAbundant
4811, 13, 37, 481453251CompositeDeficient
4821, 2, 241, 4824726244CompositeDeficient
4831, 3, 7, 21, 23, 69, 161, 4838768285CompositeDeficient
4841, 2, 4, 11, 22, 44, 121, 242, 4849931447CompositeDeficient
4851, 5, 97, 4854588103CompositeDeficient
4861, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486121092606CompositeAbundant
4871, 48724881PrimeDeficient
4881, 2, 4, 8, 61, 122, 244, 4888930442CompositeDeficient
4891, 3, 163, 4894656167CompositeDeficient
4901, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490121026536CompositeAbundant
4911, 49124921PrimeDeficient
4921, 2, 3, 4, 6, 12, 41, 82, 123, 164, 246, 492121176684CompositeAbundant
4931, 17, 29, 493454047CompositeDeficient
4941, 2, 13, 19, 26, 38, 247, 4948840346CompositeDeficient
4951, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 49512936441CompositeDeficient
4961, 2, 4, 8, 16, 31, 62, 124, 248, 49610992496CompositePerfect
4971, 7, 71, 497457679CompositeDeficient
4981, 2, 3, 6, 83, 166, 249, 49881008510CompositeAbundant
4991, 49925001PrimeDeficient
5001, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500121092592CompositeAbundant