The Integers 1 to 10000
- Range is a range of numbers, in groups of 100. Click on the range
for more information about that range.
- Count(Primes) is the count of Prime Numbers in that range.
- Count(Fibonacci) is the count of Fibonacci Numbers in that
range.
- Max(Count(d(N))) is the highest number of divisors that any single
number within that range possesses.
- Most Composite N is the list of the numbers in the range that have
the most divisors.
- Count(Deficient), Count(Abundant), and Count(Perfect)
are the counts of Deficient, Abundant, and Perfect
numbers in that range.
Range |
Count(Primes) |
Count(Fibonacci) |
Max(Count(d(N))) |
Most Composite N |
Count(Deficient) |
Count(Abundant) |
Count(Perfect) |
1-100 |
25 |
10 |
12 |
60, 72, 84, 90, 96 |
76 |
22 |
2 |
101-200 |
21 |
1 |
18 |
180 |
76 |
24 |
0 |
201-300 |
16 |
1 |
20 |
240 |
77 |
23 |
0 |
301-400 |
16 |
1 |
24 |
360 |
73 |
27 |
0 |
401-500 |
17 |
0 |
24 |
420, 480 |
74 |
25 |
1 |
501-600 |
14 |
0 |
24 |
504, 540, 600 |
76 |
24 |
0 |
601-700 |
16 |
1 |
24 |
630, 660, 672 |
76 |
24 |
0 |
701-800 |
14 |
0 |
30 |
720 |
74 |
26 |
0 |
801-900 |
15 |
0 |
32 |
840 |
75 |
25 |
0 |
901-1000 |
14 |
1 |
28 |
960 |
74 |
26 |
0 |
1001-1100 |
16 |
0 |
32 |
1080 |
77 |
23 |
0 |
1101-1200 |
12 |
0 |
30 |
1200 |
76 |
24 |
0 |
1201-1300 |
15 |
0 |
36 |
1260 |
76 |
24 |
0 |
1301-1400 |
11 |
0 |
32 |
1320 |
74 |
26 |
0 |
1401-1500 |
17 |
0 |
36 |
1440 |
74 |
26 |
0 |
1501-1600 |
12 |
1 |
32 |
1512, 1560 |
77 |
23 |
0 |
1601-1700 |
15 |
0 |
40 |
1680 |
74 |
26 |
0 |
1701-1800 |
12 |
0 |
36 |
1800 |
75 |
25 |
0 |
1801-1900 |
12 |
0 |
32 |
1848, 1890 |
76 |
24 |
0 |
1901-2000 |
13 |
0 |
36 |
1980 |
74 |
26 |
0 |
2001-2100 |
14 |
0 |
36 |
2016, 2100 |
74 |
26 |
0 |
2101-2200 |
10 |
0 |
40 |
2160 |
76 |
24 |
0 |
2201-2300 |
15 |
0 |
32 |
2280 |
75 |
25 |
0 |
2301-2400 |
15 |
0 |
36 |
2340, 2400 |
77 |
23 |
0 |
2401-2500 |
10 |
0 |
30 |
2448 |
74 |
26 |
0 |
2501-2600 |
11 |
1 |
48 |
2520 |
74 |
26 |
0 |
2601-2700 |
15 |
0 |
40 |
2640 |
78 |
22 |
0 |
2701-2800 |
14 |
0 |
36 |
2772 |
74 |
26 |
0 |
2801-2900 |
12 |
0 |
42 |
2880 |
75 |
25 |
0 |
2901-3000 |
11 |
0 |
36 |
2940 |
74 |
26 |
0 |
3001-3100 |
12 |
0 |
40 |
3024 |
76 |
24 |
0 |
3101-3200 |
10 |
0 |
40 |
3120 |
76 |
24 |
0 |
3201-3300 |
11 |
0 |
40 |
3240 |
74 |
26 |
0 |
3301-3400 |
15 |
0 |
48 |
3360 |
74 |
26 |
0 |
3401-3500 |
11 |
0 |
36 |
3420 |
74 |
26 |
0 |
3501-3600 |
14 |
0 |
45 |
3600 |
77 |
23 |
0 |
3601-3700 |
13 |
0 |
40 |
3696 |
78 |
22 |
0 |
3701-3800 |
12 |
0 |
48 |
3780 |
73 |
27 |
0 |
3801-3900 |
11 |
0 |
36 |
3840, 3900 |
74 |
26 |
0 |
3901-4000 |
11 |
0 |
48 |
3960 |
75 |
25 |
0 |
4001-4100 |
15 |
0 |
42 |
4032 |
74 |
26 |
0 |
4101-4200 |
9 |
1 |
48 |
4200 |
76 |
24 |
0 |
4201-4300 |
16 |
0 |
36 |
4284 |
74 |
26 |
0 |
4301-4400 |
9 |
0 |
48 |
4320 |
77 |
23 |
0 |
4401-4500 |
11 |
0 |
36 |
4410, 4500 |
77 |
23 |
0 |
4501-4600 |
12 |
0 |
40 |
4536, 4560 |
73 |
27 |
0 |
4601-4700 |
12 |
0 |
48 |
4620, 4680 |
74 |
26 |
0 |
4701-4800 |
12 |
0 |
42 |
4800 |
74 |
26 |
0 |
4801-4900 |
8 |
0 |
36 |
4860, 4896 |
76 |
24 |
0 |
4901-5000 |
15 |
0 |
36 |
4950 |
77 |
23 |
0 |
5001-5100 |
12 |
0 |
60 |
5040 |
75 |
25 |
0 |
5101-5200 |
11 |
0 |
36 |
5148 |
74 |
26 |
0 |
5201-5300 |
10 |
0 |
48 |
5280 |
77 |
23 |
0 |
5301-5400 |
10 |
0 |
48 |
5400 |
74 |
26 |
0 |
5401-5500 |
13 |
0 |
48 |
5460 |
75 |
25 |
0 |
5501-5600 |
13 |
0 |
48 |
5544 |
74 |
26 |
0 |
5601-5700 |
12 |
0 |
40 |
5616, 5670 |
75 |
25 |
0 |
5701-5800 |
10 |
0 |
48 |
5760 |
76 |
24 |
0 |
5801-5900 |
16 |
0 |
48 |
5880 |
73 |
27 |
0 |
5901-6000 |
7 |
0 |
48 |
5940 |
74 |
26 |
0 |
6001-6100 |
12 |
0 |
48 |
6048 |
76 |
24 |
0 |
6101-6200 |
11 |
0 |
48 |
6120 |
77 |
23 |
0 |
6201-6300 |
13 |
0 |
54 |
6300 |
72 |
28 |
0 |
6301-6400 |
15 |
0 |
42 |
6336 |
75 |
25 |
0 |
6401-6500 |
8 |
0 |
50 |
6480 |
74 |
26 |
0 |
6501-6600 |
11 |
0 |
48 |
6552, 6600 |
76 |
24 |
0 |
6601-6700 |
10 |
0 |
36 |
6624, 6660 |
73 |
27 |
0 |
6701-6800 |
12 |
1 |
56 |
6720 |
76 |
24 |
0 |
6801-6900 |
12 |
0 |
48 |
6840 |
76 |
24 |
0 |
6901-7000 |
13 |
0 |
48 |
6930 |
74 |
26 |
0 |
7001-7100 |
9 |
0 |
48 |
7020 |
76 |
24 |
0 |
7101-7200 |
10 |
0 |
54 |
7200 |
74 |
26 |
0 |
7201-7300 |
11 |
0 |
40 |
7280 |
74 |
26 |
0 |
7301-7400 |
9 |
0 |
48 |
7392 |
76 |
24 |
0 |
7401-7500 |
11 |
0 |
42 |
7488 |
75 |
25 |
0 |
7501-7600 |
15 |
0 |
64 |
7560 |
73 |
27 |
0 |
7601-7700 |
12 |
0 |
40 |
7680 |
76 |
24 |
0 |
7701-7800 |
10 |
0 |
48 |
7800 |
77 |
23 |
0 |
7801-7900 |
10 |
0 |
36 |
7812, 7840 |
75 |
25 |
0 |
7901-8000 |
10 |
0 |
60 |
7920 |
74 |
26 |
0 |
8001-8100 |
11 |
0 |
48 |
8064 |
72 |
28 |
0 |
8101-8200 |
10 |
0 |
48 |
8160, 8190 |
78 |
21 |
1 |
8201-8300 |
14 |
0 |
48 |
8280 |
74 |
26 |
0 |
8301-8400 |
9 |
0 |
60 |
8400 |
77 |
23 |
0 |
8401-8500 |
8 |
0 |
40 |
8424 |
73 |
27 |
0 |
8501-8600 |
12 |
0 |
48 |
8568, 8580 |
74 |
26 |
0 |
8601-8700 |
13 |
0 |
56 |
8640 |
78 |
22 |
0 |
8701-8800 |
11 |
0 |
48 |
8736 |
75 |
25 |
0 |
8801-8900 |
13 |
0 |
54 |
8820 |
75 |
25 |
0 |
8901-9000 |
9 |
0 |
48 |
9000 |
76 |
24 |
0 |
9001-9100 |
11 |
0 |
50 |
9072 |
76 |
24 |
0 |
9101-9200 |
12 |
0 |
48 |
9120, 9180 |
73 |
27 |
0 |
9201-9300 |
11 |
0 |
64 |
9240 |
74 |
26 |
0 |
9301-9400 |
11 |
0 |
60 |
9360 |
75 |
25 |
0 |
9401-9500 |
15 |
0 |
48 |
9450 |
75 |
25 |
0 |
9501-9600 |
7 |
0 |
48 |
9504, 9576, 9600 |
75 |
25 |
0 |
9601-9700 |
13 |
0 |
48 |
9660 |
76 |
24 |
0 |
9701-9800 |
11 |
0 |
48 |
9720 |
73 |
27 |
0 |
9801-9900 |
12 |
0 |
54 |
9900 |
78 |
22 |
0 |
9901-10000 |
9 |
0 |
40 |
9936 |
77 |
23 |
0 |