The Integers 1 to 100

  • Count(d(N)) is the number of positive divisors of n, including 1 and n itself.
  • σ(N) is the Divisor Function. It represents the sum of all the positive divisors of n, including 1 and n itself.
  • s(N) is the Restricted Divisor Function. It represents the sum of the proper divisors of n, excluding n itself.
  • For a Prime Number, Count(d(N))=2. The only divisors for a Prime Number are 1 and itself.
  • A Deficient Number is greater than the sum of its proper divisors; that is, s(N)<n.
  • An Abundant Number is less than the sum of its proper divisors; that is, s(N)>n.
  • A Perfect Number equals the sum of its proper divisors; that is, s(N)=n.
N Divisors of N Count(d(N)) σ(N) s(N) Prime or Composite Notes
11110Deficient
21, 2231PrimeDeficient
31, 3241PrimeDeficient
41, 2, 4373CompositeDeficient
51, 5261PrimeDeficient
61, 2, 3, 64126CompositePerfect
71, 7281PrimeDeficient
81, 2, 4, 84157CompositeDeficient
91, 3, 93134CompositeDeficient
101, 2, 5, 104188CompositeDeficient
111, 112121PrimeDeficient
121, 2, 3, 4, 6, 1262816CompositeAbundant
131, 132141PrimeDeficient
141, 2, 7, 1442410CompositeDeficient
151, 3, 5, 154249CompositeDeficient
161, 2, 4, 8, 1653115CompositeDeficient
171, 172181PrimeDeficient
181, 2, 3, 6, 9, 1863921CompositeAbundant
191, 192201PrimeDeficient
201, 2, 4, 5, 10, 2064222CompositeAbundant
211, 3, 7, 2143211CompositeDeficient
221, 2, 11, 2243614CompositeDeficient
231, 232241PrimeDeficient
241, 2, 3, 4, 6, 8, 12, 2486036CompositeAbundant
251, 5, 253316CompositeDeficient
261, 2, 13, 2644216CompositeDeficient
271, 3, 9, 2744013CompositeDeficient
281, 2, 4, 7, 14, 2865628CompositePerfect
291, 292301PrimeDeficient
301, 2, 3, 5, 6, 10, 15, 3087242CompositeAbundant
311, 312321PrimeDeficient
321, 2, 4, 8, 16, 3266331CompositeDeficient
331, 3, 11, 3344815CompositeDeficient
341, 2, 17, 3445420CompositeDeficient
351, 5, 7, 3544813CompositeDeficient
361, 2, 3, 4, 6, 9, 12, 18, 3699155CompositeAbundant
371, 372381PrimeDeficient
381, 2, 19, 3846022CompositeDeficient
391, 3, 13, 3945617CompositeDeficient
401, 2, 4, 5, 8, 10, 20, 4089050CompositeAbundant
411, 412421PrimeDeficient
421, 2, 3, 6, 7, 14, 21, 4289654CompositeAbundant
431, 432441PrimeDeficient
441, 2, 4, 11, 22, 4468440CompositeDeficient
451, 3, 5, 9, 15, 4567833CompositeDeficient
461, 2, 23, 4647226CompositeDeficient
471, 472481PrimeDeficient
481, 2, 3, 4, 6, 8, 12, 16, 24, 481012476CompositeAbundant
491, 7, 493578CompositeDeficient
501, 2, 5, 10, 25, 5069343CompositeDeficient
511, 3, 17, 5147221CompositeDeficient
521, 2, 4, 13, 26, 5269846CompositeDeficient
531, 532541PrimeDeficient
541, 2, 3, 6, 9, 18, 27, 54812066CompositeAbundant
551, 5, 11, 5547217CompositeDeficient
561, 2, 4, 7, 8, 14, 28, 56812064CompositeAbundant
571, 3, 19, 5748023CompositeDeficient
581, 2, 29, 5849032CompositeDeficient
591, 592601PrimeDeficient
601, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 6012168108CompositeAbundant
611, 612621PrimeDeficient
621, 2, 31, 6249634CompositeDeficient
631, 3, 7, 9, 21, 63610441CompositeDeficient
641, 2, 4, 8, 16, 32, 64712763CompositeDeficient
651, 5, 13, 6548419CompositeDeficient
661, 2, 3, 6, 11, 22, 33, 66814478CompositeAbundant
671, 672681PrimeDeficient
681, 2, 4, 17, 34, 68612658CompositeDeficient
691, 3, 23, 6949627CompositeDeficient
701, 2, 5, 7, 10, 14, 35, 70814474CompositeAbundant
711, 712721PrimeDeficient
721, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 7212195123CompositeAbundant
731, 732741PrimeDeficient
741, 2, 37, 74411440CompositeDeficient
751, 3, 5, 15, 25, 75612449CompositeDeficient
761, 2, 4, 19, 38, 76614064CompositeDeficient
771, 7, 11, 7749619CompositeDeficient
781, 2, 3, 6, 13, 26, 39, 78816890CompositeAbundant
791, 792801PrimeDeficient
801, 2, 4, 5, 8, 10, 16, 20, 40, 8010186106CompositeAbundant
811, 3, 9, 27, 81512140CompositeDeficient
821, 2, 41, 82412644CompositeDeficient
831, 832841PrimeDeficient
841, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 8412224140CompositeAbundant
851, 5, 17, 85410823CompositeDeficient
861, 2, 43, 86413246CompositeDeficient
871, 3, 29, 87412033CompositeDeficient
881, 2, 4, 8, 11, 22, 44, 88818092CompositeAbundant
891, 892901PrimeDeficient
901, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 9012234144CompositeAbundant
911, 7, 13, 91411221CompositeDeficient
921, 2, 4, 23, 46, 92616876CompositeDeficient
931, 3, 31, 93412835CompositeDeficient
941, 2, 47, 94414450CompositeDeficient
951, 5, 19, 95412025CompositeDeficient
961, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 9612252156CompositeAbundant
971, 972981PrimeDeficient
981, 2, 7, 14, 49, 98617173CompositeDeficient
991, 3, 9, 11, 33, 99615657CompositeDeficient
1001, 2, 4, 5, 10, 20, 25, 50, 1009217117CompositeAbundant