N |
Divisors of N |
Count(d(N)) |
σ(N) |
s(N) |
Prime or Composite |
Notes |
1 | 1 | 1 | 1 | 0 | | Deficient |
2 | 1, 2 | 2 | 3 | 1 | Prime | Deficient |
3 | 1, 3 | 2 | 4 | 1 | Prime | Deficient |
4 | 1, 2, 4 | 3 | 7 | 3 | Composite | Deficient |
5 | 1, 5 | 2 | 6 | 1 | Prime | Deficient |
6 | 1, 2, 3, 6 | 4 | 12 | 6 | Composite | Perfect |
7 | 1, 7 | 2 | 8 | 1 | Prime | Deficient |
8 | 1, 2, 4, 8 | 4 | 15 | 7 | Composite | Deficient |
9 | 1, 3, 9 | 3 | 13 | 4 | Composite | Deficient |
10 | 1, 2, 5, 10 | 4 | 18 | 8 | Composite | Deficient |
11 | 1, 11 | 2 | 12 | 1 | Prime | Deficient |
12 | 1, 2, 3, 4, 6, 12 | 6 | 28 | 16 | Composite | Abundant |
13 | 1, 13 | 2 | 14 | 1 | Prime | Deficient |
14 | 1, 2, 7, 14 | 4 | 24 | 10 | Composite | Deficient |
15 | 1, 3, 5, 15 | 4 | 24 | 9 | Composite | Deficient |
16 | 1, 2, 4, 8, 16 | 5 | 31 | 15 | Composite | Deficient |
17 | 1, 17 | 2 | 18 | 1 | Prime | Deficient |
18 | 1, 2, 3, 6, 9, 18 | 6 | 39 | 21 | Composite | Abundant |
19 | 1, 19 | 2 | 20 | 1 | Prime | Deficient |
20 | 1, 2, 4, 5, 10, 20 | 6 | 42 | 22 | Composite | Abundant |
21 | 1, 3, 7, 21 | 4 | 32 | 11 | Composite | Deficient |
22 | 1, 2, 11, 22 | 4 | 36 | 14 | Composite | Deficient |
23 | 1, 23 | 2 | 24 | 1 | Prime | Deficient |
24 | 1, 2, 3, 4, 6, 8, 12, 24 | 8 | 60 | 36 | Composite | Abundant |
25 | 1, 5, 25 | 3 | 31 | 6 | Composite | Deficient |
26 | 1, 2, 13, 26 | 4 | 42 | 16 | Composite | Deficient |
27 | 1, 3, 9, 27 | 4 | 40 | 13 | Composite | Deficient |
28 | 1, 2, 4, 7, 14, 28 | 6 | 56 | 28 | Composite | Perfect |
29 | 1, 29 | 2 | 30 | 1 | Prime | Deficient |
30 | 1, 2, 3, 5, 6, 10, 15, 30 | 8 | 72 | 42 | Composite | Abundant |
31 | 1, 31 | 2 | 32 | 1 | Prime | Deficient |
32 | 1, 2, 4, 8, 16, 32 | 6 | 63 | 31 | Composite | Deficient |
33 | 1, 3, 11, 33 | 4 | 48 | 15 | Composite | Deficient |
34 | 1, 2, 17, 34 | 4 | 54 | 20 | Composite | Deficient |
35 | 1, 5, 7, 35 | 4 | 48 | 13 | Composite | Deficient |
36 | 1, 2, 3, 4, 6, 9, 12, 18, 36 | 9 | 91 | 55 | Composite | Abundant |
37 | 1, 37 | 2 | 38 | 1 | Prime | Deficient |
38 | 1, 2, 19, 38 | 4 | 60 | 22 | Composite | Deficient |
39 | 1, 3, 13, 39 | 4 | 56 | 17 | Composite | Deficient |
40 | 1, 2, 4, 5, 8, 10, 20, 40 | 8 | 90 | 50 | Composite | Abundant |
41 | 1, 41 | 2 | 42 | 1 | Prime | Deficient |
42 | 1, 2, 3, 6, 7, 14, 21, 42 | 8 | 96 | 54 | Composite | Abundant |
43 | 1, 43 | 2 | 44 | 1 | Prime | Deficient |
44 | 1, 2, 4, 11, 22, 44 | 6 | 84 | 40 | Composite | Deficient |
45 | 1, 3, 5, 9, 15, 45 | 6 | 78 | 33 | Composite | Deficient |
46 | 1, 2, 23, 46 | 4 | 72 | 26 | Composite | Deficient |
47 | 1, 47 | 2 | 48 | 1 | Prime | Deficient |
48 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 | 10 | 124 | 76 | Composite | Abundant |
49 | 1, 7, 49 | 3 | 57 | 8 | Composite | Deficient |
50 | 1, 2, 5, 10, 25, 50 | 6 | 93 | 43 | Composite | Deficient |
51 | 1, 3, 17, 51 | 4 | 72 | 21 | Composite | Deficient |
52 | 1, 2, 4, 13, 26, 52 | 6 | 98 | 46 | Composite | Deficient |
53 | 1, 53 | 2 | 54 | 1 | Prime | Deficient |
54 | 1, 2, 3, 6, 9, 18, 27, 54 | 8 | 120 | 66 | Composite | Abundant |
55 | 1, 5, 11, 55 | 4 | 72 | 17 | Composite | Deficient |
56 | 1, 2, 4, 7, 8, 14, 28, 56 | 8 | 120 | 64 | Composite | Abundant |
57 | 1, 3, 19, 57 | 4 | 80 | 23 | Composite | Deficient |
58 | 1, 2, 29, 58 | 4 | 90 | 32 | Composite | Deficient |
59 | 1, 59 | 2 | 60 | 1 | Prime | Deficient |
60 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 | 12 | 168 | 108 | Composite | Abundant |
61 | 1, 61 | 2 | 62 | 1 | Prime | Deficient |
62 | 1, 2, 31, 62 | 4 | 96 | 34 | Composite | Deficient |
63 | 1, 3, 7, 9, 21, 63 | 6 | 104 | 41 | Composite | Deficient |
64 | 1, 2, 4, 8, 16, 32, 64 | 7 | 127 | 63 | Composite | Deficient |
65 | 1, 5, 13, 65 | 4 | 84 | 19 | Composite | Deficient |
66 | 1, 2, 3, 6, 11, 22, 33, 66 | 8 | 144 | 78 | Composite | Abundant |
67 | 1, 67 | 2 | 68 | 1 | Prime | Deficient |
68 | 1, 2, 4, 17, 34, 68 | 6 | 126 | 58 | Composite | Deficient |
69 | 1, 3, 23, 69 | 4 | 96 | 27 | Composite | Deficient |
70 | 1, 2, 5, 7, 10, 14, 35, 70 | 8 | 144 | 74 | Composite | Abundant |
71 | 1, 71 | 2 | 72 | 1 | Prime | Deficient |
72 | 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 | 12 | 195 | 123 | Composite | Abundant |
73 | 1, 73 | 2 | 74 | 1 | Prime | Deficient |
74 | 1, 2, 37, 74 | 4 | 114 | 40 | Composite | Deficient |
75 | 1, 3, 5, 15, 25, 75 | 6 | 124 | 49 | Composite | Deficient |
76 | 1, 2, 4, 19, 38, 76 | 6 | 140 | 64 | Composite | Deficient |
77 | 1, 7, 11, 77 | 4 | 96 | 19 | Composite | Deficient |
78 | 1, 2, 3, 6, 13, 26, 39, 78 | 8 | 168 | 90 | Composite | Abundant |
79 | 1, 79 | 2 | 80 | 1 | Prime | Deficient |
80 | 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 | 10 | 186 | 106 | Composite | Abundant |
81 | 1, 3, 9, 27, 81 | 5 | 121 | 40 | Composite | Deficient |
82 | 1, 2, 41, 82 | 4 | 126 | 44 | Composite | Deficient |
83 | 1, 83 | 2 | 84 | 1 | Prime | Deficient |
84 | 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 | 12 | 224 | 140 | Composite | Abundant |
85 | 1, 5, 17, 85 | 4 | 108 | 23 | Composite | Deficient |
86 | 1, 2, 43, 86 | 4 | 132 | 46 | Composite | Deficient |
87 | 1, 3, 29, 87 | 4 | 120 | 33 | Composite | Deficient |
88 | 1, 2, 4, 8, 11, 22, 44, 88 | 8 | 180 | 92 | Composite | Abundant |
89 | 1, 89 | 2 | 90 | 1 | Prime | Deficient |
90 | 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 | 12 | 234 | 144 | Composite | Abundant |
91 | 1, 7, 13, 91 | 4 | 112 | 21 | Composite | Deficient |
92 | 1, 2, 4, 23, 46, 92 | 6 | 168 | 76 | Composite | Deficient |
93 | 1, 3, 31, 93 | 4 | 128 | 35 | Composite | Deficient |
94 | 1, 2, 47, 94 | 4 | 144 | 50 | Composite | Deficient |
95 | 1, 5, 19, 95 | 4 | 120 | 25 | Composite | Deficient |
96 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 | 12 | 252 | 156 | Composite | Abundant |
97 | 1, 97 | 2 | 98 | 1 | Prime | Deficient |
98 | 1, 2, 7, 14, 49, 98 | 6 | 171 | 73 | Composite | Deficient |
99 | 1, 3, 9, 11, 33, 99 | 6 | 156 | 57 | Composite | Deficient |
100 | 1, 2, 4, 5, 10, 20, 25, 50, 100 | 9 | 217 | 117 | Composite | Abundant |